
From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

!1

Java 8
From Smile To Tears:

Emotional Stampedlock
Dr Heinz M. Kabutz

Last updated 2014-03-23

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Heinz Kabutz
l Author of The Java Specialists' Newsletter

– Articles about advanced core Java programming

l http://www.javaspecialists.eu

!2

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Stampedlock

!3

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Motivation For Stampedlock
l Some constructs need a form of read/write lock

l ReentrantReadWriteLock can cause starvation
– Plus it always uses pessimistic locking

!4

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Motivation For Stampedlock
l StampedLock provides optimistic locking on reads

– Which can be converted easily to a pessimistic read

l Write locks are always pessimistic
– Also called exclusive locks

l StampedLock is not reentrant

!5

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Read-Write Locks Refresher
l ReadWriteLock interface

– The writeLock() is exclusive - only one thread at a time
– The readLock() is given to lots of threads at the same time

• Much better when mostly reads are happening
– Both locks are pessimistic

!6

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Account With Reentrantreadwritelock

!7

The cost overhead
of the RWLock

means we need at
least 2000

instructions to
benefit from the

readLock() added
throughput

public class BankAccountWithReadWriteLock {
 private final ReadWriteLock lock =
 new ReentrantReadWriteLock();
 private double balance;
 public void deposit(double amount) {
 lock.writeLock().lock();
 try {
 balance = balance + amount;
 } finally { lock.writeLock().unlock(); }
 }
 public double getBalance() {
 lock.readLock().lock();
 try {
 return balance;
 } finally { lock.readLock().unlock(); }
 }
}

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Reentrantreadwritelock Starvation
l When readers are given priority, then writers might

never be able to complete (Java 5)

l But when writers are given priority, readers might
be starved (Java 6)

l http://www.javaspecialists.eu/archive/Issue165.html

!8

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Java 5 Readwritelock Starvation
l We first acquire some read locks

l We then acquire one write lock

l Despite write lock waiting, read 
locks are still issued

l If enough read locks are issued, 
write lock will never get a chance  
and the thread will be starved!

!9

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Readwritelock In Java 6
l Java 6 changed the policy  

and now read locks have to 
wait until the write lock has  
been issued

l However, now the readers  
can be starved if we have  
a lot of writers  

!10

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Synchronized vs Reentrantlock
l ReentrantReadWriteLock, ReentrantLock and

synchronized locks have the same memory
semantics

l However, synchronized is easier to write correctly
synchronized(this) {
 // do operation
}

rwlock.writeLock().lock();
try {
 // do operation
} finally {
 rwlock.writeLock().unlock();
}

!11

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Bad Try-Finally Blocks
l Either no try-finally at all

rwlock.writeLock().lock();
// do operation
rwlock.writeLock().unlock();

!12

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Bad Try-Finally Blocks
l Or the lock is locked inside the try block

try {
 rwlock.writeLock().lock();
 // do operation
} finally {
 rwlock.writeLock().unlock();
}

!13

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Bad Try-Finally Blocks
l Or the unlock() call is forgotten in some places

altogether!

rwlock.writeLock().lock();
// do operation
// no unlock()

!14

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Introducing Stampedlock
l Pros

– Has better performance than ReentrantReadWriteLock
– Latest versions do not suffer from starvation of writers

l Cons
– Idioms are more difficult than with ReadWriteLock

• A small change in idiom code can make a big difference
in performance

– Not nonblocking
– Non-reentrant

!15

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Pessimistic Exclusive Locks (Write)
public class StampedLock { 
 long writeLock() 
 long writeLockInterruptibly() 
 throws InterruptedException 

 long tryWriteLock() 
 long tryWriteLock(long time, TimeUnit unit) 
 throws InterruptedException 

 void unlockWrite(long stamp) 
 boolean tryUnlockWrite() 

 Lock asWriteLock() 
 long tryConvertToWriteLock(long stamp)

!16

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Pessimistic Non-Exclusive (Read)
public class StampedLock { (continued …) 
 long readLock() 
 long readLockInterruptibly()  
 throws InterruptedException 

 long tryReadLock() 
 long tryReadLock(long time, TimeUnit unit)  
 throws InterruptedException 

 void unlockRead(long stamp) 
 boolean tryUnlockRead() 

 Lock asReadLock() 
 long tryConvertToReadLock(long stamp)

!17

Optimistic reads
to come ...

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Bank Account With Stampedlock
public class BankAccountWithStampedLock { 
private final StampedLock lock = new StampedLock(); 
private double balance; 
public void deposit(double amount) { 
 long stamp = lock.writeLock();

 try {
 balance = balance + amount;
 } finally { lock.unlockWrite(stamp); }
 }
 public double getBalance() {
 long stamp = lock.readLock();
 try {
 return balance;
 } finally { lock.unlockRead(stamp); }
 }
}

!18

The StampedLock reading
is a typically cheaper than
ReentrantReadWriteLock

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Why Not Use Volatile?
public class BankAccountWithVolatile {
 private volatile double balance;
!
 public synchronized void deposit(double amount) {
 balance = balance + amount;
 }
!
 public double getBalance() {
 return balance;
 }
}

!19

Much easier!
Works because there

are no invariants
across the fields.

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Example With Invariants Across Fields
l Point class has x,y coordinates, "belong together"
public class MyPoint {
 private double x, y;
 private final StampedLock sl = new StampedLock();
!
 // method is modifying x and y, needs exclusive lock
 public void move(double deltaX, double deltaY) {
 long stamp = sl.writeLock();
 try {
 x += deltaX;
 y += deltaY;
 } finally { sl.unlockWrite(stamp); }
 }

!20

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Optimistic Non-Exclusive "Locks"
public class StampedLock {
 long tryOptimisticRead()
!

!

 boolean validate(long stamp)
!

!

!

!

!

!

 long tryConvertToOptimisticRead(long stamp)

!21

Try to get an optimistic read
lock - might return zero if
an exclusive lock is active

checks whether a write
lock was issued after the
tryOptimisticRead() was
called

Note: sequence validation requires
stricter ordering than apply to
normal volatile reads - a new
explicit loadFence() was added

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Code Idiom For Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

!22

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Code Idiom For Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

!23

We get a
stamp to use

for the
optimistic

read

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Code Idiom For Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

!24

We read
field values
into local

fields

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Code Idiom For Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

!25

Next we validate
that no write

locks have been
issued in the
meanwhile

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Code Idiom For Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

!26

If they have,
then we don't

know if our state
is clean

Thus we acquire a
pessimistic read
lock and read the

state into local
fields

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Code Idiom For Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

!27

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Optimistic Read In Point Class
public double distanceFromOrigin() {
 long stamp = sl.tryOptimisticRead();
 double currentX = x, currentY = y;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentX = x;
 currentY = y;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return Math.hypot(currentX, currentY);
}

!28

Shorter code path in
optimistic read leads

to better read
performance than with
original examples in

JavaDoc

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Code Idiom For Conditional Change
public boolean changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

!29

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Code Idiom For Conditional Change
public boolean changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

!30

We get a pessimistic
read lock

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Code Idiom For Conditional Change
public boolean changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

!31

If the state is not the
expected state, we

unlock and exit method

Note: the general unlock()
method can unlock both

read and write locks

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Code Idiom For Conditional Change
public boolean changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

!32

We try convert our read
lock to a write lock

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Code Idiom For Conditional Change
public boolean changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

!33

If we are able to upgrade to
a write lock (ws != 0L), we

change the state and exit

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Code Idiom For Conditional Change
public boolean changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

!34

Else, we explicitly unlock the
read lock and lock the write lock

And we try again

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Code Idiom For Conditional Change
public boolean changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

!35

If the state is not the
expected state, we

unlock and exit method

This could happen if between the
unlockRead() and the writeLock()
another thread changed the values

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Code Idiom For Conditional Change
public boolean changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

!36

Because we hold the write lock,
the tryConvertToWriteLock()

method will succeed

We update the state and exit

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Code Idiom For Conditional Change
public boolean changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

!37

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Applying To Our Point Class
public boolean moveIfAt(double oldX, double oldY,
 double newX, double newY) {
 long stamp = sl.readLock();
 try {
 while (x == oldX && y == oldY) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 x = newX; y = newY;
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

!38

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Performance Stampedlock & Rwlock
l We researched ReentrantReadWriteLock in 2008

– Discovered serious starvation of writers (exclusive lock) in Java 5
– And also some starvation of readers in Java 6
– http://www.javaspecialists.eu/archive/Issue165.html

l StampedLock released to concurrency-interest list 12th Oct 2012
– Worse writer starvation than in the ReentrantReadWriteLock
– Missed signals could cause StampedLock to deadlock

l Revision 1.35 released 28th Jan 2013
– Changed to use an explicit call to loadFence()
– Writers do not get starved anymore
– Works correctly

!39

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Performance Stampedlock & Rwlock
l In our test, we used

– lambda-8-b75-linux-x64-28_jan_2013.tar.gz
– Two CPUs, 4 Cores each, no hyperthreading

• 2x4x1
– Ubuntu 9.10
– 64-bit
– Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz

• L1-Cache: 256KiB, internal write-through instruction
• L2-Cache: 1MiB, internal write-through unified
• L3-Cache: 8MiB, internal write-back unified

– JavaSpecialists.eu server
• Never breaks a sweat delivering newsletters

!40

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Conversions To Pessimistic Reads
l In our experiment, reads had to be converted to

pessimistic reads less than 10% of the time
– And in most cases, less than 1%

l This means the optimistic read worked most of the
time

!41

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

How Much Faster Is Stampedlock
Than Reentrantreadwritelock?
l With a single thread

x
fa

st
er

 th
an

 R
ea

dW
rit

eL
oc

k

0

1

3

4

5

R=1,W=0 R=0,W=1

1.08x

0.00x 0.00x

4.43x Read Speedup
Write Speedup

!42

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

l With four threads
x

fa
st

er
 th

an
 R

ea
dW

rit
eL

oc
k

0

1

10

100

1000

R=4,W=0 R=3,W=1 R=2,W=2 R=1,W=3 R=0,W=4

1.2x1.1x1.2x

0.9x

353x

12x11x

64x

Read Speedup
Write Speedup

!43

How Much Faster Is Stampedlock
Than Reentrantreadwritelock?

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

l With sixteen threads
This demonstrates the

starvation problem on readers
in RWLock

x
fa

st
er

 th
an

 R
ea

dW
rit

eL
oc

k

1

10

100

1000

10000

R=16,W=0 R=13,W=3 R=10,W=6 R=7,W=9 R=4,W=12 R=1,W=15

Read Speedup
Write Speedup

!44

How Much Faster Is Stampedlock
Than Reentrantreadwritelock?

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Reader Throughput With Stampedlock

Th
ro

ug
hp

ut
 (L

og
ar

ith
m

ic
 S

ca
le

)

100

1000

10000

Number of Reader Threads (no Writers)

1 2 4 8 16

Read Throughput
Expected (linear to n cores)

!45

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Writer Throughput With Stampedlock

Th
ro

ug
hp

ut
 (L

in
ea

r S
ca

le
)

0.0

0.5

1.0

1.5

2.0

Number of Writer Threads (no Readers)

1 2 4 8 16

Write Throughput

Note: Linear
Scale

throughput

!46

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Mixed Reader Throughput Stampedlock
Th

ro
ug

hp
ut

 (L
og

ar
ith

m
ic

Sc

al
e)

1

10

100

1000

10000

Number of Reader Threads (16 - n Writers)

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Read Throughput

!47

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Mixed Reader Throughput Rwlock

Shows
Reader

Starvation
in

RWLock

ReentrantReadWriteLock
Th

ro
ug

hp
ut

 (L
og

ar
ith

m
ic

Sc

al
e)

0.001

0.01

0.1

1

10

100

Number of Reader Threads (16 - n
Writers)

16151413121110 9 8 7 6 5 4 3 2 1

Read Throughput

!48

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Conclusion Of Performance Analysis
l StampedLock performed very well in all our tests

– Much faster than ReentrantReadWriteLock

l Offers a way to do optimistic locking in Java

l Good idioms have a big impact on the performance

!49

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Idioms With Lambdas

!50

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Idioms With Lambdas
l Java 8 lambdas allow us to define a structure of a

method, leaving the details of what to call over to
users

– A bit like the "Template Method" Design Pattern

!51

List<String> students = new ArrayList<>();
Collections.addAll(students, "Anton", "Heinz", "John");
students.forEach((s) -> System.out.println(s.toUpperCase()));

ANTON
HEINZ
JOHN

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Lambdafaq.Org
l Edited by Maurice Naftalin

– Are lambda expressions objects?
– Why are lambda expressions so-called?
– Why are lambda expressions being added to Java?
– Where is the Java Collections Framework going?
– Why are Stream operations not defined directly on

Collection?
– etc.

!52

http://www.lambdafaq.org/are-lambda-expressions-objects/
http://www.lambdafaq.org/why-are-lambda-expressions-so-called/
http://www.lambdafaq.org/why-are-lambda-expressions-being-added-to-java/
http://www.lambdafaq.org/where-is-the-java-collections-framework-going/
http://www.lambdafaq.org/why-are-stream-operations-not-defined-directly-on-collection/

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Idioms For Using Stampedlock
import java.util.concurrent.locks.*;
import java.util.function.*;
!
public class LambdaStampedLock extends StampedLock {
 public void writeLock(Runnable writeJob) {
 long stamp = writeLock();
 try {
 writeJob.run();
 } finally {
 sl.unlockWrite(stamp);
 }
 }

!53

lsl.writeLock(
 () -> {
 x += deltaX;
 y += deltaY;
 }
);

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Idioms For Using Stampedlock
public <T> T optimisticRead(Supplier<T> supplier) {
 long stamp = tryOptimisticRead();
 T result = supplier.get();
 if (!validate(stamp)) {
 stamp = readLock();
 try {
 result = supplier.get();
 } finally {
 unlockRead(stamp);
 }
 }
 return result;
}

!54

double[] xy = lsl.optimisticRead(
 () -> new double[]{x, y}
);
return Math.hypot(xy[0], xy[1]);

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

Idioms For Using Stampedlock
public static boolean conditionalWrite(
 BooleanSupplier condition, Runnable action) {
 long stamp = readLock();
 try {
 while (condition.getAsBoolean()) {
 long writeStamp = tryConvertToWriteLock(stamp);
 if (writeStamp != 0) {
 action.run();
 stamp = writeStamp;
 return true;
 } else {
 unlockRead(stamp);
 stamp = writeLock();
 }
 }
 return false;
 } finally {
 unlock(stamp);
 }
}

!55

return lsl.conditionalWrite(
 () -> x == oldX && y == oldY,
 () -> { x = newX; y = newY; }
);

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

!56

From Smile To Tears:
Emotional Stampedlock  

heinz@javaspecialists.eu

Questions?

From Smile to Tears: Emotional StampedLock
©

 2013-2014 H
einz K

abutz – A
ll R

ights R
eserved 

!57

The Java Specialists' Newsletter

